结构动力学之哈密顿原理 / 拉格朗日运动方程

通常三种等价但形式不同的方法建立结构动力学“运动方程”:

  • 达朗贝尔原理
    • 把惯性力视为“假想力”,将结构在动载荷下的行为转化为静力平衡问题。适用于简单结构或微元体分析,但在复杂系统中不易推广。
  • 哈密顿原理 / 拉格朗日方程(对于复杂系统,应用最广的是第这种方法):
    • 哈密顿原理是一种变分原理,它通过系统的动能、势能和阻尼耗散函数建立运动方程,适合离散化后的有限自由度系统拉格朗日方程是哈密顿原理的等价形式,广泛用于有限元法和计算力学软件中。
  • 虚位移原理
    • 虚位移原理强调外力与内力在虚位移上的功相等,是建立有限元单元刚度矩阵的基础。虽然形式上与哈密顿原理不同,但在离散系统中可以转化为等价表达。

结构动力系统的动能、势能、阻尼耗散函数及广义力表达式(哈密顿原理 / 拉格朗日运动方程)是一个二阶常微分方程组,矩阵形式为:

Mu¨(t)+Cu˙(t)+Ku(t)=F(t)

其中:

  • u(t): 广义位移向量(随时间变化)
  • u˙(t): 广义速度向量
  • u¨(t): 广义加速度向量
  • 𝑀,𝐶,𝐾:质量矩阵,阻尼矩阵,刚度矩阵
  • F (t): 广义外力向量(时间函数)
动力结构的运动方程(二阶常微分方程组)图解

动力结构的运动方程(二阶常微分方程组)图解

发表评论